skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnston, Juliet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 22, 2025
  2. Lynn_Ishaq, Suzanne (Ed.)
    ABSTRACT Microbiology conferences can be powerful places to build collaborations and exchange ideas, but for queer and transgender (trans) scientists, they can also become sources of alienation and isolation. Many conference organizers would like to create welcoming and inclusive events but feel ill-equipped to make this vision a reality, and a historical lack of representation of queer and trans folks in microbiology means we rarely occupy these key leadership roles ourselves. Looking more broadly, queer and trans scientists are systematically marginalized across scientific fields, leading to disparities in career outcomes, professional networks, and opportunities, as well as the loss of unique scientific perspectives at all levels. For queer and trans folks with multiple, intersecting, marginalized identities, these barriers often become even more severe. Here, we draw from our experiences as early-career microbiologists to provide concrete, practical advice to help conference organizers across research communities design inclusive, safe, and welcoming conferences, where queer and trans scientists can flourish. 
    more » « less
  3. Abstract Although the phylum Chloroflexota is ubiquitous, its biology and evolution are poorly understood due to limited cultivability. Here, we isolated two motile, thermophilic bacteria from hot spring sediments belonging to the genus Tepidiforma and class Dehalococcoidia within the phylum Chloroflexota. A combination of cryo-electron tomography, exometabolomics, and cultivation experiments using stable isotopes of carbon revealed three unusual traits: flagellar motility, a peptidoglycan-containing cell envelope, and heterotrophic activity on aromatics and plant-associated compounds. Outside of this genus, flagellar motility has not been observed in Chloroflexota, and peptidoglycan-containing cell envelopes have not been described in Dehalococcoidia. Although these traits are unusual among cultivated Chloroflexota and Dehalococcoidia, ancestral character state reconstructions showed flagellar motility and peptidoglycan-containing cell envelopes were ancestral within the Dehalococcoidia, and subsequently lost prior to a major adaptive radiation of Dehalococcoidia into marine environments. However, despite the predominantly vertical evolutionary histories of flagellar motility and peptidoglycan biosynthesis, the evolution of enzymes for degradation of aromatics and plant-associated compounds was predominantly horizontal and complex. Together, the presence of these unusual traits in Dehalococcoidia and their evolutionary histories raise new questions about the timing and selective forces driving their successful niche expansion into global oceans. 
    more » « less